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f Department of Physics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 355 

Received 17 August 1982 

Abstract. The pair connectedness for directed site percolation on the honeycomb and 
diamond lattices is related to that of the square and simple cubic lattices respectively. In 
the case of bond percolation the same correspondence leads to site-bond percolation on 
the latter pair of lattices. 

Directed percolation first introduced by Broadbent and Hammersley (1957) has 
recently proved to be of considerable interest. Dhar et a1 (1982) have obtained the 
relation 

(1) 

between the generating functions for site animals on the honeycomb and square 
lattices, from which they deduce that the critical probabilities for directed site percola- 
tion are related by 

x G p  ( x ,  y )  = Gsq(x2, y +xy) 

p""" = ( p y .  (2) 

Equation (2) follows from (1) since in general G(p,  1 - p )  = p ( l  - P ( p ) )  where P ( p )  
is the percolation probability and hence 

PhO"(p) =P"(pP). (3) 

The partial derivatives G,(p, 1 - p )  and G,(p, 1 - p )  determine the mean size and 
mean perimeter of clusters in the percolation problem, and taking the x deriyative 
of (1) expresses the mean size for the honeycomb lattice in terms of the mean size 
and mean perimeter of the square lattice. Here we show that an approach using the 
pair connectedness leads to a direct relation between the mean size functions. We 
shall also consider the spatial moments which determine the two connectedness lengths 
of this model (Kinzel and Yeomans 1981, Essam and De'Bell 1981). 

The results have an immediate extension to site percolation on the diamond lattice. 
In the case of bond percolation the situation is not so simple, and to obtain a 
correspondence it is necessary to consider percolation models on the square and cubic 
lattices in which both sites and bonds are randomly occupied. 

Suppose that the honeycomb lattice H is directed and coloured as in Dhar et a1 
(1982, figure l(c)). In the discussion of connectedness lengths below, the geometry 
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as well as the topology of the lattice is important, and we suppose that the nearest- 
neighbour distance a = 2 units and that the bond angles are 120". The vertices on 
the two triangular sublattices T I  (black) and T2 (white) have one and two bonds 
directed away from them respectively. We first relate the pair connectedness of H to 
that of a lattice SQ which is topologically a directed square lattice. The latter may be 
obtained from H by contracting the bonds which are directed from TI to Tz. During 
the contraction the sites of TI are fixed and_ T2 approaches TI, and thus SO has the 
sites of TI and its lattice parameter is 2J3 (see figure 1). The pair connectedness 
&'""(p, j )  is the probability that there is at least one path of occupied sites from a 
chosen site p l  of T, (figure 1) to the site i of H ,  given that p l  is occupied. 

Figure 1. Sublattices TI (0) and T2 (0) of the honeycomb lattice. Contraction of bonds 
from 7'1 to T2 gives the directed square lattice. 

Let rli be the set of all possible paths from pl to j .  By inclusion and exclusion 

p;""(p, j )  = ( - I ) " ~ J P ~ ~ " ( ~ ,  7 ~ : ~ )  
4 ~ l T , , = ~ , ,  

where P ( p ,  rii) is the probability that the nij occupied paths rl occur simultaneously. 
For i = 2 and j E T2 the above contraction induces a natural correspondence between 
paths on H and paths on SQ. If in the contraction rij -+ f i j  then, since p2+p1 and 
there is a two-to-one correspondence between the other sites of H used by rij and 
E:, we find that 

Phon(p, T i j )  = P ( p 2 ,  e;) .  ( 5 )  

P!?" ( p ,  i )  = pSq(p2, i f ) ,  j E  T2, (6 )  

Hence 

where j '  is the site of TI approached by j in the contraction. Similarly 
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The moments of the pair connectedness are defined by 

where xij, fii are the coordinates of j relative to axes at pi perpendicular and parallel 
to p1 -pz respectively. In particular, pk?(p, i) is the mean size of clusters rooted at 
pi. These moments may be related to 

where xi and ti are the coordinates of i on the directed square lattice with unit lattice 
parameter and 90" bond angles. Using 

, i = 1, jET1, 

[3tj, i =2,  j E  T2, 

we find 

(14) p : z ( p ,  1) = C ( 6 ~ ~ ) ~ / ~ 2 ~ ' ~ P ~ ~ ( p ~ ,  j)[(3tjIm +p(3fj + 2  1/2 ) m 3 
jsSQ 

and 

where the prime means that j = p1 is excluded from the sum. The case m = 0 gives 
the simple result 

p%" ( p ,  1) = pp?o"" ( p ,  2) = 6'/*(1+ p)pS: ( p z )  (16) 

and hence the transverse connectedness lengths on the two lattices are related by the 
factor 6ll2. For 1 # O  the even part of p : ,  is proportional to p:z(pz)  but the odd 
part depends on p2"m.p') for m ' s  m. Thus for 1 = 0, m = 2 

1/2  sq p 2 ( p ,  2) = 18psd:(p2)+p-'[18p~~p2(p2)- 12 x 2 p0t(P2)+4(pSOqO(P2)- 111. (17) 

5?(p)-3x2 511 ( P 7 .  
The longitudinal connectedness-lengths are not simply related but as p + p?, 

Extension of the above arguments to three-dimensional site percolation shows 
that (2), (6)-(10) are valid with the honeycomb replaced by the diamond lattice (with 
a = 3) and the square by the simple cubic lattice (with a = 1). Equations (14) and 
(15) become 

1/2  sq 

and 
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For 1 = 0 equation (16) is valid with 6 replaced by 12, which implies that 

(20) 
Extension to higher-dimensional lattices is clearly possible. 

The correspondence between paths described above is also valid for bond percola- 
tion, however, the factors p are now associated with the bonds rather than the sites. 
Thus, on contraction of the bonds directed from T I  to T2, the factors associated with 
these bonds become associated with the sites onto which they are contracted. The 
other bonds of H correspond one-to-one with the bonds of SQ. The honeycomb 
directed bond problem therefore corresponds to percolation on the directed square 
lattice with bonds and sites having equal probabilities of being present. Similar remarks 
apply to higher-dimensional lattices. 

Finally, it is clear that there is a correspondence between directed site-bond 
percolation with general parameters ps, P b  on the above pairs of lattices. Thus 

sc 112 p F a = ( P c  1 * 

psp = p p ,  (21) hon 2 hon 
P:"=(ps ) P b  9 

which provides a mapping between the critical curves. 
Finally, we note that the value of p c  = 0.8228 f 0.0001 for the bond-site problem 

on the square lattice obtained by Kinzel and Yeomans is in excellent agreement with 
the value of P,=0.8226*0.0002 obtained by Blease (1977) for the bond problem 
on the directed honeycomb lattice. 

We thank D D Betts for critically reading this manuscript. 
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